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ABSTRACT
Point clouds obtained from 3D scanning are typically incomplete,
noisy, and sparse. Previous completion methods aim to generate
complete point clouds, while taking into account the densification
of point clouds, filling small holes, and proximity-to-surface, all
through a single network. After revisiting the task, we propose
SDNet, which disentangles the task based on the spatial character-
istics of point clouds and formulates two sub-networks, a Dense
Refiner and a Missing Generator. Given a partial input, the Dense
Refiner produces a dense and clean point cloud, as a more reliable
partial surface, which assists the Missing Generator to better infer
the remaining point cloud structure. To promote the alignment
and interaction across these two modules, we propose a Cross Fu-
sion Unit with designed Non-Symmetrical Cross Transformers to
capture geometric relationships between partial and missing re-
gions, contributing to a complete, dense and well-aligned output.
Extensive quantitative and qualitative results demonstrate that our
method outperforms the state-of-the-art methods.
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Figure 1: The overview of previous methods and ours. (a) is usually
based on encoder-decoders, and it restores the complete point cloud
based on the global features obtained by encoding the partial point
cloud. (b) predicts only the missing point cloud, and concatenate
the predicted point cloud with the partial point cloud to get the
final complete point cloud. (c) is the method we propose in this
paper. The Dense Refiner refines and upsamples the partial point
cloud into a detailed and dense point cloud (green rabbit) while the
Missing Generator predicts missing regions (violet rabbit). The final
completion results are obtained by concatenating.

1 INTRODUCTION
In recent years, the development of 3D scanning technology has
made it easier to acquire and process point cloud data, which has led
to numerous downstream applications [4, 5, 14], e.g., autonomous
driving, virtual reality, and robotics, etc. Nevertheless, it is common
for the scanned point cloud to be sparse and incomplete due to noise,
occlusion, or sensor limitations. Therefore, it is more desirable to
complete the sparse raw data into complete and dense point clouds
before further 3D analysis.

Point cloud completion aims to complete 3D models from partial
inputs. However, point clouds acquired from scanning techniques
are not only incomplete, but often sparse and noisy. Therefore, it
is very critical that the generated complete point cloud satisfies
the criteria of being dense, accurately positioned on the underlying
surface, and free of holes and gaps. As a local-to-global inference
task, these goals are extremely challenging since partial inputs
provide limited and noisy information.

Over the years, with the help of data-driven machine learning
and deep neural networks, several deep-learning-based methods
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for point cloud completion have been proposed [1, 6, 9, 12, 19,
30, 36, 43], demonstrating superior performance over traditional
methods. Inspired by the great success of PCN [37], most of the
works [22, 23, 25, 30, 31, 39] adopt the encoder-decoder architecture
to generate complete point clouds as shown in Fig. 1(a). Although
this design is effective, it has inherent defects in that it relies on
highly-concentrated global features to reconstruct the complete
point cloud, inevitably losing the original geometric details of par-
tial inputs. Another stream of methods [9, 36] treat point cloud
completion as a set-to-set transformation problem and only predict
the point cloud for the missing part, as shown in Fig. 1(b). Overall,
existing methods with the paradigms in Fig. 1(a) and (b) take the
completion process as a whole. In other words, the designed com-
pletion network is expected not only to infer point in the missing
region, but also to generate more points near the partial inputs, in
order to achieve a complete, dense and uniformly-distributed point
cloud. However, it is very hard for a network to meet all goals at
the same time. Thus, the complete results of existing methods tends
to be noisy, as presented in Figs. 6 and 7. Essentially, generating
more points around the partial input is a local-wise task, while
inferring the missing points of a full shape is a global-wise task.
Thus different network designs should be considered for them.

After revisiting the point cloud completion task, we propose a
novel disentangled point cloud completion framework, called SD-
Net, which mainly consists of two sub-networks, a Dense Refiner
and a Missing Generator. An illustration of our method can be seen
in Fig. 1(c). Given a partial input, the Dense Refiner aims to produce
a dense and clean point cloud, providing a more reliable partial
surface representation. Benefited from that, the Missing Generator
could mainly focus on inferring point clouds in missing regions.
The complete shape is obtained by combining the outputs from
these two branches. To better promote the geometric interaction
across two branches, we further introduce a Cross Fusion Unit with
designed Non-Symmetrical Cross Transformer via capturing geo-
metric relationships between points in partial and missing regions.
Such that, Missing Generator and Dense Refiner can complement
with each other, contributing a complete, dense and well-aligned
result.

In comparison to existing methods of completing point clouds,
our spatially disentangled framework is able to generate dense
and reliable partial point clouds and utilize these detailed point
clouds to assist point cloud completion. Additionally, an off-line
data preprocessing method is developed, which can increase the
focus of the two sub-networks on the tasks they are responsible for.
As a result, we are able to obtain dense complete point clouds with
high detail recovery and smooth surfaces. Experimental results on
ShapeNet-55/34 [36] and MVP [15] demonstrate that our method
achieves the state-of-the-art performance.

2 RELATEDWORK
Point Cloud Completion Point Cloud completion plays a key
role in improving the computer’s ability to understand point clouds.
Traditional point cloud completion attempts usually rely on pre-
defined smooth surfaces to reconstruct the full geometry [2, 8],
or construct local priors from a large number of structured basic
3D shapes [20, 21]. However, this series of methods rely on prior

structured data distribution, which is difficult to meet large-scale
and complex application scenarios. Benefited from PointNet [16]
and PointNet++ [17], many completion methods based on deep
neural networks have been proposed in recent years. PCN [37] is
one of the earliest learning-based methods for point cloud com-
pletion that directly operates on the original point cloud without
introducing other structural assumptions. They adopt a coarse-to-
fine completion strategy and use the encoder-decoder architecture,
which has a profound impact on subsequent work [3, 13, 22, 24, 40].
GRNet [30] also adopted this architecture and learned the rela-
tionship between points by using a voxelized representation to
aggregate features. ASFM-Net [28] is trained with an asymmetrical
Siamese network architecture to learn more prior information in
prediction by introducing global information in the complete point
cloud reconstruction process. PMPNet [25] and PMPNet++ [26]
regard point cloud completion as the movement of points, and the
final complete point cloud is obtained by moving the points to the
correct position. Thus, they do not need to predict the precise co-
ordinates of the point cloud in 3D space, but only an offset, which
greatly reduces the difficulty of completing point clouds. This strat-
egy was adopted by Snowflakenet [29] and SeedFormer [43] as
well, which completed the point cloud using three offset predic-
tions. However, [29] utilizes a new Skip-Transformer to efficiently
aggregate information from the previous step, and the addition
of point clouds relies on deconvolution operations. [43] further
introduces the uptransformer, allowing for more local information
to be included in the upsampling process.

PFNet [9] is the first work to only predict missing parts from
partial point clouds. They utilize a feature-points-based multi-scale
generative network combined with adversarial loss to generate
more realisticmissing regions. PoinTr [36] also adopts this approach
and regard point cloud completion as a set-to-set transformation
problem. They proposed a transformer-based encoder-decoder ar-
chitecture, which only recovers the point clouds of missing regions.
The closest to our work is NSFA [41], they also divide the point
cloud completion task into two sub-networks, but they only decou-
ple the two parts of the point cloud at the feature level, and our
work further decouples the two parts in spatial space.
Point Cloud Upsampling Upsampling point clouds can be con-
sidered a form of point cloud completion, but upsampling is of-
ten used to fill small gaps, while completion is used to fill larger
holes. Recently, some deep learning-based methods have been pro-
posed [10, 18, 33–35], such as PU-Net [35], which expands point
sets by extracting multi-scale features. PU-Gan [10] is the first
work to introduce the adversarial loss in point cloud upsampling.
Moreover, the Dis-PU [11] decouples the upsampling process, and
regards upsampling as a coarse-to-fine process, which reduces the
task difficulty of a single network.

After revisiting these methods mentioned above, we found that
existing works almost rely on a single network to meet their specify
task. They ignored the relationship between completion and up-
sampling. We often see such a phenomenon that it is often difficult
for the completion network to preserve the geometric details of
the object, and the upsampling network is often unable to restore
large-area vacancies. The reason for this is that region refinement
requires local geometric details, while missing inference requires
global shape information. This means the features needed to achieve
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Figure 2: The overall architecture of our SDNet. Given an incomplete point cloud 𝑃 , our network completes it via two branches.
The top branch is composed of three Feature Propagation [17] (FP) layers and an Offset Regression unit. This branch aims to
produce dense point clouds that fill small holes and restore broken links. The bottom branch is used to reconstruct missing
regions, including a Set Transformer [36] and three Multi-scale Completion Modules (MCM). In order to make the two branches
work together, we also employed a Cross Fusion Unit with three Non-Symmetrical Cross Transformers (NSCTs) to aggregate
geometry features.

these two goals are in different distributions, and it is difficult for a
single network to meet both objectives. Inspired by [11], We pro-
pose a novel approach to disentangle the task and achieve superior
performance over prior works.

3 METHODS
3.1 Overview
Given an incomplete point cloud 𝑃 = {𝑝𝑖 }𝑁𝑖=1 of 𝑁 points which is
typically sparse and noisy, the point cloud completion task aims to
predict a complete point cloud 𝑃𝑐 = {𝑝𝑖 }𝑁𝑐

𝑖=1. Its goals are two-fold:
(i) is to restore a completed point cloud 𝑃𝑐 that represents the full
structure of the object; (ii) is to produce a denser point cloud 𝑃𝑐
while preserving the original geometric details of 𝑃 . This comple-
tion task is very challenging, as we need to infer new knowledge
from the sparse and partial input, where the original geometry does
not fully presented.

Unlike existing approaches that try to meet all the completion
goals via a single network, we propose to divide the completion
task into two sub-goals. One is to restore the details and holes
around the partial point cloud, which is similar to point cloud
upsampling. The other is to predict large missing parts of the point
cloud simultaneously. In order to better illustrate our method, we
first discuss our key insights:

1) We propose an end-to-end disentangled point cloud comple-
tion framework with two sub-networks. The Dense Refiner
refines and upsamples partial point clouds based on their
structural information, resulting in dense point clouds with
well-restored local geometric details. The Missing Generator
infers missing parts from shape information predicted from
partial point clouds. In this way, each sub-network can make
better use of the local detail or global shape information.

2) Inferring the missing shape directly from partial point clouds
often results in rough point clouds. Therefore, we designed
a Cross Fusion Unit in order to assist the Missing Genera-
tor in capturing the multi-scale geometric details of partial

regions. With NSCTs, features across distances can be cap-
tured, allowing the generated points to take advantage of
the geometric structure information at hand.

3) We preprocessed the dataset and obtained the ground truth
required for the Dense Refiner and Missing Generator, re-
spectively. Thus, each sub-network can better focus on its
specific sub-goal.

Fig 2 shows the overall pipeline of SDNet, which consists of
four stages: Feature Extractor, Cross Fusion Unit, Dense Refiner
and Missing Generator. Given a partial point cloud 𝑃 , we first feed
it into the Feature Extractor to extract features 𝐹𝑝 of 𝑁𝑝 × 𝐶𝑝 ,
which captures the structure feature of the partial point cloud. In
order to aggregate multi-scale regional information and expand the
receptive field, we adopt two layers of Set Abstraction from [17]
and Point Transformer from [42]. After that, the extracted feature
𝐹𝑝 and corresponding coordinates 𝑃𝑝 are fed into the Dense Refiner
and Missing Generator.

3.2 Dense Refiner
Inspired by the residual-learning strategy [7], the goal of Dense Re-
finer is to learn an offset to refine the partial point cloud 𝑃 and gen-
erate a dense point cloud 𝑃𝑅 . We first adopt the SA layer in [17] to
gather features again to obtain the global features 𝐹 0

𝐺
of the partial

point cloud, and then use the Feature Propagation [17](FP) module
of three consecutive layers to propagate the global feature 𝐹 0

𝐺
to the

entire partial point cloud space. Therefore, we will get three pairs
of point cloud coordinates 𝑃𝑖

𝑅
(𝑖 = 1, 2, 3) and the corresponding

per point features 𝐹 𝑖
𝑅
(𝑖 = 1, 2, 3), which satisfy 𝑃1

𝑅
⊂ 𝑃2

𝑅
⊂ 𝑃3

𝑅
⊆ 𝑃 .

In order to realize the refinement and upsampling of the partial
point cloud, the usual follow step is to decode the features 𝐹 3

𝑅
to

obtain the offset. And then dense points are generated by adding
offset to partial point cloud coordinates. However, there are two
main problems with this approach. First of all, the distribution of
points in the partial point cloud may deviate from the ground truth,
necessitating the consideration of noise in point cloud completion.
Furthermore, Dense Refiner only learns structural information, not
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Figure 3: The detailed architecture of Multi-scale Completion Mod-
ule (MCM), which takes the 𝑃𝑖−1

𝑀
, 𝐹 𝑖−1

𝑀
and 𝐻 𝑖−1

𝑀
from the previous

layer and global feature 𝐹 𝑖
𝐺

as input, and generates new point cloud
𝑃𝑖
𝑀

through upsampling and residual strategies.

a global picture of a shape as a whole. Hence, we designed a new
offset regression module, by inputting the output of each level of
feature propagation layer to the Cross Fusion Unit to obtain multi-
scale global features 𝐹 𝑖

𝐺
(𝑖 = 1, 2, 3) to help the partial point cloud

perceive the missing area and move towards it. In order to elim-
inate the influence of the input containing noise points, we add
noise 𝑥 when performing offset regression to train the denoising
ability during decoding. And the introduction of noise also helps to
encourage the module to explore a wider area when refining. The
final offset can be expressed as:

Δ𝑝 = tanh
(
MLP

( [
𝐹 3𝑅 : 𝑃1𝐺 : 𝑃2𝐺 : 𝑃3𝐺 : 𝑥

] ))
(1)

where “:” denotes the concatenation operation.

3.3 Missing Generator
To reconstruct missing regions, it is essential to make full use of
prior knowledge provided by existing points. The Missing Genera-
tor is also designed around this concept. The two strategies we have
adopted for exploitation of existing points are as follows. One is
similar to [25], which learns the context of generated point clouds.
The second approach involves the Cross Fusion Unit capturing the
geometric features of the partial point cloud. We first apply the
Set Transformer [36] for set transformation, which converts the
partial point cloud coordinates 𝑃𝑝 and corresponding per-point
features 𝐹𝑝 into coordinates 𝑃0

𝑀
and features 𝐹 0

𝑀
of key points in

the missing regions. Considering the powerful capability of the
SPD decoder [29], we adopt a similar structure in the subsequent
reconstruction step, called Multi-scale Completion Module (MCM).
Fig 3 shows the architecture of MCM in detail. MCM consumes
the coordinates 𝑃𝑖−1

𝑀
, per-point features 𝐹 𝑖−1

𝑀
and offset features

𝐻 𝑖−1
𝑀

from the previous layer and the global features 𝐹 𝑖
𝐺
from Cross

Fusion Unit as input. 𝐹 𝑖
𝐺
can be seen as a complement to the de-

tails. Firstly, we encode the 𝑃𝑖−1
𝑀

to obtain the position embedding,
which is concatenated with 𝐹 𝑖−1

𝑀
and 𝐹 𝑖

𝐺
. Then, we employ a Point

Transformer [42] to fuse current features 𝐹 𝑖𝑐 and 𝐻 𝑖−1
𝑀

together. 𝐹 𝑖𝑐
can be expressed as:

𝐹 𝑖𝑐 = MLP
( [
MLP

(
𝑃𝑖−1𝑀

)
: 𝐹 𝑖−1𝑀 : 𝐹 𝑖𝐺

] )
(2)

Next we apply an upsampler from [29] to upsample the fused feature
from 𝑁 𝑖−1

𝑀
to 𝑁 𝑖

𝑀
, where 𝑁 𝑖

𝑀
denotes the number of points 𝑃𝑖

𝑀
.

Finally we regress per-point displacements as the same as [29].
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Figure 4: The detailed architecture of Non-Symmetrical Cross Trans-
former (NSCT). Instead of equally treating all of the features, we
only consider the relation among K feature neighbors of 𝐹 𝑖−1

𝑀
. And

with this feature KNN strategy, NSCT can aggregate the similar fea-
tures across spatial distances.

3.4 Cross Fusion Unit
It is often difficult to recover the complete point cloud only by
extracting global features from the partial point cloud, as these
global features are only incomplete information. Unfortunately,
many works [23, 37, 41] in the past have adopted this scheme to
obtain dense point clouds. Considering this issue, we propose a
Cross Fusion Unit to extract global features during the point cloud
step-by-step completion process. Cross Fusion Units take the multi-
scale point cloud and features as inputs, and output the global
features of the corresponding scales to guide the two sub-networks.
In addition, during experiments we noticed that feature aggregation
with emphasis is more effective than fully impartial global feature
extraction. For specific analysis, please refer to Sec 4.3. Therefore,
we designed three similar units to aggregate features, called Non-
Symmetrical Cross Transformer (NSCT). Fig 4 shows the details
of NSCT. Specifically, we first concatenate two sets of point cloud
coordinates and features to obtain the total coordinates 𝑃𝑖

𝑇
and

features 𝐹 𝑖
𝑇
. Then we use the point-wise features 𝐹 𝑖−1

𝑀
of missing

regions as queries to search k nearest neighbors in 𝐹 𝑖
𝑇
and group

these points and features with the closest features to obtain the
stacked 𝑁 𝑖−1

𝑀
×𝐾×3 point volume and 𝑁 𝑖−1

𝑀
×𝐾×𝐶 feature volume.

We duplicate 𝑘 copies of the coordinates and features at the same
time and then subtract them from the grouped coordinates and
features to obtain the spatial relationships and feature maps of the
feature approximation points. Then we apply MLPs on the spatial
relationships to get positional embeddings, which will be added
into feature maps and feature groups. In order to make the feature
maps have error correction ability, we apply MLPs followed by
a softmax to further obtain the feature weight matrix𝑊 . We dot
product the feature groups with the𝑊 followed by a summation
along the K-dimension to obtain the aggregated point-wise feature.
Finally, we apply MLPs and Maxpool on the new point-wise feature
as the final aggregated global feature of the i-th layer.

3.5 Data Preprocessing and Training Loss
Data Preprocessing. The goal of data preprocessing is to com-
pletely disentangle the outputs of the two sub-networks in space.
The process can refer to Fig 5( For the best rendering effect, a two-
dimensional plane is used here to display). We first grid the partial
point cloud to get Fig 5(a), and the grid containing the points is
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Table 1: Shape completion results (CD loss multiplied by 104) on multi-view partial point cloud dataset (8,192 points). The
proposed SDNet achieves the lowest reconstruction errors in 12 categories. The best results are highlighted in bold.
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PCN [37] 9.28 3.78 6.53 4.43 12.71 20.38 8.22 12.44 9.41 20.15 9.73 13.70 3.86 1.34 4.68 5.20 4.55
GRNet [30] 7.53 3.34 6.77 4.52 10.21 16.08 7.71 9.37 5.70 14.46 7.36 10.21 4.14 2.18 3.74 3.22 4.38
TopNet [23] 7.54 3.13 5.65 3.97 10.40 17.21 6.99 9.71 6.85 16.48 7.22 10.40 3.46 1.12 3.96 4.74 2.30
VRCNet [15] 5.66 2.34 4.72 3.33 6.78 12.23 5.62 7.34 4.99 13.74 5.03 6.82 2.82 1.09 2.78 3.90 2.85
PoinTr [36] 4.83 1.79 5.15 3.32 5.71 8.51 5.45 6.36 3.79 11.06 4.29 6.15 2.69 1.56 2.37 2.51 3.62

SnowflakeNet [29] 4.62 1.58 5.12 3.33 5.64 7.75 4.98 6.23 4.14 9.55 4.12 6.19 2.72 0.62 2.48 2.65 3.07
Ours 4.26 1.90 4.48 3.31 5.53 6.98 4.77 5.46 3.33 8.95 4.26 5.86 2.56 0.82 2.52 1.86 2.29
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Figure 5: The data preprocessing process. Point clouds are repre-
sented by blue points, grids are represented by light blue, and dilation
grids are represented by navy blue.

marked in light blue, and then we use a morphological dilation on
these grids to obtain Fig 5(b). The dilation of A can be defined as:

𝐴 ⊕ 𝐵 =
{
𝑧 ∈ E |

(
𝐵𝑠

)
𝑧 ∩𝐴 ≠ ∅

}
,

𝐵𝑠 = {𝑥 ∈ E | −𝑥 ∈ 𝐵}
(3)

Here, B denotes the structuring element and E is the integer grid
Z𝑑 . The new grids resulting from the dilation we color navy blue,
from where we can see that through the dilation we close the small
holes and gaps. We then intersect these grids with the rasterized
ground truth to obtain the ground truth required for refinement,
which is denser and smoother than a partial point cloud. We invert
the expanded partial grids and then intersect with the ground truth
to obtain the ground truth for the missing regions. In order to avoid
the ground truth of two parts appearing thin seams or holes at the
junction, we also perform the dilation operation on the grid of the
missing area. This creates an overlapping region between the two
parts of the point cloud, which facilitates the feature fusion of the
two sub-networks.
Trainning Loss. In order to maximize the effectiveness of network
training, we supervise the results from Dense Refiner and Missing
Generator of each step simultaneously. For performance consid-
erations, we use the most widely used Chamfer Distance (CD) as
the loss function to measure the difference between two point sets,
which is defined as follows:

L𝐶𝐷 (𝑃,𝐺) = 1
|𝑃 |

∑︁
𝑥∈𝑃

min
𝑦∈𝐺

∥𝑥 − 𝑦∥2 +
1
|𝐺 |

∑︁
𝑦∈𝐺

min
𝑥∈𝑃

∥𝑦 − 𝑥 ∥2 .

For Dense Refiner, we note that the point clouds generated by each
step of FP are a subset of the partial point clouds. Therefore, only
the final output 𝑃𝑅 is used as the calculation loss, and the loss
function is defined as:

L𝑅𝑒𝑓 𝑖𝑛𝑒 = L𝐶𝐷

(
𝑃𝑅,𝐺𝑅𝑒𝑓 𝑖𝑛𝑒

)
(4)

where𝐺𝑅𝑒𝑓 𝑖𝑛𝑒 is the ground truth of the refinement obtained from
the data preprocessing. And each step in Missing Generator means
the generation of a new point cloud. Therefore, for the output
of each MCM in Missing Generator, we adopt the preprocessed
ground truth𝐺𝑀𝑖𝑠𝑠 of the missing region for supervision, and its
loss function can be written as:

L𝑀𝑖𝑠𝑠 =

𝑇∑︁
𝑖=0

L𝐶𝐷

(
𝑃𝑖𝑀 ,𝐺𝑀𝑖𝑠𝑠

)
(5)

Here, the 𝑃𝑖
𝑀

is the 𝑖-th step output of MCM. In addition, we con-
catenate the output of the two subnetworks as the final output
𝑃𝐹𝑖𝑛𝑎𝑙 , compare it with the complete point clouds 𝐺 , and its loss
function is as follows:

L𝐹𝑖𝑛𝑎𝑙 = L𝐶𝐷 (𝑃𝐹𝑖𝑛𝑎𝑙 ,𝐺) (6)

The total training loss can be written as:
L = 𝛼L𝑅𝑒𝑓 𝑖𝑛𝑒 + 𝛽L𝑀𝑖𝑠𝑠 + 𝛾L𝐹𝑖𝑛𝑎𝑙 (7)

The 𝛼 , 𝛽 and 𝛾 is the hyperparameter.

4 EXPERIMENTS
In this section, we will reveal the test results of SD-Net on two
high-difficulty benchmarks: MVP [15] and ShapeNet-55/34 [36].
Experimental results show that our proposed network surprisingly
achieves state-of-the-art on point cloud completion tasks. In ad-
dition, to demonstrate the effectiveness of our structure, we also
conduct ablation experiments for further validation.

4.1 Experiments on MVP Dataset
The MVP dataset [15] is a high-quality multi-view partial point
cloud dataset that contains a total of 4,000 CAD models (2,400 for
training and 1,600 for testing) and 16 categories. For each CAD
model, there are 26 corresponding partial point clouds from differ-
ent camera perspectives. In addition, the MVP dataset also provides
complete point cloud ground truth with different resolutions (in-
cluding 2,048, 4,096, 8,192 and 16,384). In our experiments, we adopt
the ground truth with 8,192 points for training and testing, and we
apply L2 version of Chamfer distance as our evaluation indicators.

Table 1 shows the quantitative results of our SD-Net and previ-
ous completion methods on MVP dataset, where we can find that
SDNet has achieved the best performance in 12 categories over
the others. Specifically, compared to the two closest works to our
network module, PoinTr [36] and SnowflakeNet [29], SDNet re-
duces the average CD by more than 8%, and reduces the CD by 2.11
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Figure 6: Qualitative results on the MVP dataset. Our SDNet is able to preserve more partial details and also outperforms the
other state-of-the-art point cloud completion methods in recovering missing structures.

Table 2: Completion results on ShapeNet-55 evaluated as CD-ℓ1, CD-ℓ2 ×103 (lower is better) and F-Score@1% (higher is better).

Methods F-Average F-S F-M F-H CD-ℓ1-Average CD-ℓ1-S CD-ℓ1-M CD-ℓ1-H CD-ℓ2-Average CD-ℓ2-S CD-ℓ2-M CD-ℓ2-H

PCN [37] 0.164 0.175 0.169 0.149 25.21 23.18 24.32 28.13 2.37 1.85 2.14 3.14
FoldingNet [32] 0.082 - - - - - - - 3.13 2.68 2.66 4.06
TopNet [23] 0.177 0.191 0.181 0.159 23.41 21.66 22.80 26.16 1.94 1.52 1.76 2.54
PFNet [38] 0.339 - - - - - - - 5.22 3.84 3.88 8.03
GRNet [30] 0.248 0.256 0.252 0.236 21.09 19.02 20.46 23.79 1.66 1.13 1.47 2.37

SnowflakeNet [29] 0.413 0.451 0.421 0.366 15.20 12.95 14.62 18.02 1.03 0.61 0.87 1.60
PoinTr [36] 0.469 0.497 0.485 0.424 13.95 11.62 13.08 17.14 1.05 0.58 0.88 1.70

SeedFormer [43] 0.444 0.486 0.455 0.391 13.98 11.66 13.33 16.96 0.92 0.49 0.77 1.50

Ours 0.532 0.558 0.557 0.481 11.76 9.94 10.78 14.56 0.85 0.48 0.69 1.39

Table 3: Completion results on ShapeNet-34 dataset evaluated as CD-ℓ2 ×1000 (lower is better) and F-Score@1% (higher is better).

34 seen categories 21 unseen categories

CD-Avg F-Avg CD-S CD-M CD-H CD-Avg F-Avg CD-S CD-M CD-H
FoldingNet [32] 2.35 0.139 1.86 1.81 3.38 3.62 0.095 2.76 2.74 5.36

PCN [37] 2.22 0.154 1.87 1.81 2.97 3.85 0.101 3.17 3.08 5.29
TopNet [23] 2.31 0.171 1.77 1.61 3.54 3.50 0.121 2.62 2.43 5.44
PFNet [38] 4.68 0.347 3.16 3.19 7.71 8.16 0.322 5.29 5.87 13.33
GRNet [30] 1.74 0.251 1.26 1.39 2.57 2.99 0.216 1.85 2.25 4.87
PoinTr [36] 1.23 0.421 0.76 1.05 1.88 1.67 3.44 1.04 1.67 3.44

SnowflakeNet [29] 0.99 0.422 0.60 0.86 1.50 1.75 0.388 0.88 1.46 2.92
SeedFormer [43] 0.83 0.452 0.48 0.70 1.30 1.34 0.402 0.61 1.07 2.35

Ours 0.81 0.535 0.49 0.67 1.27 1.33 0.503 0.64 1.02 2.32

on the bed category, which is lower 19% than the PoinTr’s result.
Therefore, these improvements should be attributed to our network
architecture,which has a great effect on improving the performance
of point cloud completion. We also compare with previous meth-
ods on qualitative results, as shown in Fig 6. It shows that SDNet
can generate obviously better results with more faithful geometric
details and less noise.

4.2 Experiments on ShapeNet-55/34 Dataset
The ShapeNet-55 dataset [36] is composed of artificially synthesized
ShapeNet datasets [27], which were first proposed in PoinTr [36].

ShapeNet-55 contains a total of 55 categories with 41,952 models for
training and 10,518 models for testing, which is currently the point
cloud completion dataset with the most categories and the most
difficulties. The ShapeNet-34 dataset is also a subset of ShapeNet,
divided into two parts: 21 unseen categories for testing with 2,305
models and 34 seen categories with 46,765 models for training
and 3,400 for testing. Both of the datasets sample 2,048 points as
input and 8,192 points as ground truth. In the evaluation stage, we
adopt the same strategy as PoinTr, select 8 fixed viewing angles to
generate partial point cloud by sampling 2,048, 4,096 or 6,144 points
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Figure 7: Qualitative results on the ShapeNet-55 dataset. Our SDNet is able to preserve more partial details and also outperforms
the other state-of-the-art point cloud completion methods in recovering missing structures.

(25%, 50% or 75% of the complete point cloud) which corresponds
to three different levels of difficulty.

We tested all 55 categories under three levels of difficulty, using
CD-ℓ1, CD-ℓ2 and F-Score as our evaluation indicators, and the test
results are shown in table 2. It can be seen that SDNet exceeds the
state-of-the-art model in any evaluation indicators under the three
difficulties. On easy difficulty, our CD-ℓ2 metric is close to that of
SeedFormer [43], but on hard difficulty, our CD-ℓ2 metric has im-
proved significantly, which shows that SDNet has better robustness.

It is also worth mentioning that our F-Score and CD-ℓ1 have greatly
improved compared to SeedFormer [43] and PoinTr [36], which
shows that the point cloud generated by SDNet better follows the
distribution of ground truth. This will be more evident in the qual-
itative experimental results in Fig 7. From these results, we can
clearly see that our results are closer to the complete point cloud,
especially in the details of missing regions, e.g., the jet port of the
aircraft, audios on both sides of the computer, etc. Furthermore, we
provide error maps as shown in Fig 8, where the colors indicate
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Figure 8: Comparing point cloud completion results from partial
inputs using different methods. We also show the associated error
maps, where the colors reveal the nearest distance for each target
point to the predicted point set generated by each method.

Table 4: Ablation study on the MVP dataset. We investigate differ-
ent designs including Dense Refiner, Non-Symmetrical Cross Trans-
former (NSCT) and Data Preprocess.

Model Missing Generator Dense Refiner NSCT Data Preprocess CD-ℓ2

A ✓ 5.50
B ✓ ✓ ✓ 4.50
C ✓ ✓ ✓ 4.83

Full ✓ ✓ ✓ ✓ 4.26

the nearest distance for each point in the target point set to the
predicted point set. We can see that the errors of our completed
results are the lowest (i.e., most points are blue and least points are
red), which is also verified by CD values. More comparison results
can be found in the supplemental material.

We also conduct experiments for SDNet and previous state-of-
the-art methods on ShapeNet-34. The quantitative experimental
results are shown in Table 3, from where we can see that our results
are significantly better than PoinTr in both 34 seen categories and 21
unseen categories. Compared with the state-of-the-art SeedFormer,
our CD-ℓ2 is basically similar to their results, but we achieved 0.535
F-score on 34 seen categories, while SeedFormer only obtained
0.452 F-score. Furthermore, in the 21 unseen categories, we have
improved the F-score by about 0.1 compared with the SeedFormer.

4.3 Ablation Study
To demonstrate the effectiveness of the major components in our
SDNet, we conducted a detailed ablation study on the MVP dataset
with the resolution of 8192 points by simplifying the total frame-
work in the flowing three cases: (A) removing the Dense Refiner
and Cross Fusion Unit and only keeping the Missing Generator; (B)
removing the whole Non-Symmetrical Cross Transformer in Cross
Fusion Unit and replace it with MLPs; (C) removing the ground
truth used for supervision obtained by our data preprocessing. As
shown in Table 4, we compared each case’s CD-ℓ2 value to our
full pipeline (bottom row). We can clearly observe that when only
the Missing Generator is used for point cloud completion (case

Partial Dense Refiner Part Generator Final Ground Truth

Figure 9: Visualization of the intermediate results of SDNet. The
objects in green are outputs of Dense Refiner while the objects in
yellow are Missing Generator’s results. The last column is the final
output of SDNet.

A), the performance of the network has declined sharply, which
shows that the ability of Dense Refiner to aggregate local geomet-
ric features is crucial for point cloud completion. In case B, we
adopted MLPs to fairly aggregate the point-wise features of the
two sub-networks, which resulted in the aggregated feature being
the average feature of the two sub-networks, whereas NSCT tends
to be more inclined to the features of the missing region points
when aggregating, which is beneficial to maintain the feature dis-
tribution learned by Missing Generator, and helps Dense Refiner to
perceive the information of the missing area. By comparing case3
with the full model, we can conclude that such data processing
can provide better supervision for point cloud completion. Clearly,
our full pipeline performs the best with the lowest CD value, and
removing any component will decrease overall quality, meaning
that each component in our framework contributes.

4.4 Visualization of SDNet
In Fig 9, we visualize the process of point cloud completion. We
can see that Dense Refiner refines the partial and completes the
area close to the partial, while the Missing Generator focuses on
the completion of the missing part. In addition, we can also see that
the output of the two sub-networks has some overlapping parts,
which is conducive to the final output having a smoother surface
in the connection of the two parts.

5 CONCLUSION
In this paper, we present a novel point cloud completion framework,
which disentangled the completion task into two sub-goals, partial
refinement and missing region generation. To this end, we formu-
late an end-to-end disentangled completion structure with two sub-
networks:a Dense Refiner and a Missing Generator. Additionally,
we designed a Fusion Unit to aggregate point relationships between
refine and missing regions. With the help of NSCTs, these features
can provide accurate detail information for missing region infer-
ence. By cascading, these multi-scale features can provide global
structural information for region refinement. And we processed
the data so that each sub-network could focus on its own tasks.
Experimental results demonstrate the superiority of our method
over others.
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7 SUPPLEMENTARY
7.1 Implementation Details
In this section, we will give the specific implementation details of
the SDNet. We train our network on the PyTorch platform. For
ShapeNet-55/34 dataset, the network is set to train with a batchsize
of 48 for 200 epochs and the AdamW optimizer is used with the
learning rate of 0.005, which is continuously decreased by a decay
rate of 0.76 for every 20 epochs. The hyperparameter 𝛼 , 𝛽 and 𝛾
are all set to 1, which means that the model training will pay more
attention to the generation of missing regions. If the input point
cloud in the dataset has large noise, the values of 𝛼 and 𝛾 can be
increased appropriately. On the MVP dataset [15], we set the batch
size as before but set the epoch to 100 and adopt the same learning
rate and decay rate as VRCNet[15].
Feature Extractor. We use two cascaded set abstraction (SA) [17]
and point transformer (PT) [42] to extract features from the partial
point cloud. In order to save computational cost, we progressively
use Farthest Point Sampling(FPS) to downsample the original par-
tial point cloud (2,048 points) to 256 center points. The detailed
network architecture is: 𝑆𝐴 (𝐶𝑖𝑛 = 3,𝐶𝑜𝑢𝑡 = 128, 𝑁𝑜𝑢𝑡 = 512) →
𝑃𝑇 (𝐶𝑖𝑛 = 128,𝐶𝑜𝑢𝑡 = 128) → 𝑆𝐴(𝐶𝑖𝑛 = 128,𝐶𝑜𝑢𝑡 = 256, 𝑁𝑜𝑢𝑡 =

256) → 𝑃𝑇 (𝐶𝑖𝑛 = 256,𝐶𝑜𝑢𝑡 = 256), where 𝐶𝑖𝑛 and 𝐶𝑜𝑢𝑡 are the
numbers of feature channels of the input and output point clouds,
and 𝑁𝑜𝑢𝑡 is the number of points after FPS.
Set Transformer.Weemploy a lightweight Geometry-aware Trans-
former [36] as our Set Transformer to convert the center point of
the partial point cloud to the keypoint of the missing part. Due to
the strong strength of MCM in point cloud generation, we set the
numbers of blocks of the encoder and decoder in Set Transformer
to 1 and 2 and the hidden dimensions are set to 256.
Table 5: Complexity analysis.We report the the number of pa-
rameter (Params) and theoretical computation cost (FLOPs)
of our method and eight existing methods. We also provide
the average Chamfer distances of all categories in ShapeNet-
55 (CD55) and unseen categories in ShapeNet-34 (CD34) as
references.

Models Params FLOPs CD55 CD34
FoldingNet [32] 2.30 M 27.58 G 3.12 3.62
PCN [37] 5.04 M 15.25 G 2.66 3.85
TopNet [23] 5.76 M 6.72 G 2.91 3.50
PFNet [38] 73.05 M 4.96 G 5.22 8.16
GRNet [30] 73.15 M 40.44 G 1.97 2.99
PoinTr [36] 30.9 M 10.41 G 1.07 2.05
SnowflakeNet [29] 19.30 M 9.17 G 1.03 1.75
SeedFormer [43] 3.24 M 20.70 G 0.92 1.34
Ours 14.32 M 10.83 G 0.85 1.33

7.2 Complexity Analysis
We provide a detailed complexity analysis in Table 5, including the
number of parameters and theoretical computation cost (FLOPs) of
different models under the ShapeNet-55 dataset. We also provide
the overall Chamfer Distance of all categories in ShapeNet-55 and
unseen 21 categories in ShapeNet-34 as references. Recent state-
of-the-art methods have shown impressive performance gains, but
often at the cost of increased time and space requirements. In con-
trast, our method achieves superior performance while maintaining

low time and space overhead. Our approach strikes a balance be-
tween efficiency and effectiveness, with a focus on achieving the
best possible performance without sacrificing practical considera-
tions.

7.3 Dataset Preprocessing Details
The purpose of data preprocessing is to provide strong and effective
supervision for the training process of SDNet. This allows the point
clouds generated by the two sub-networks to be better disentangled
spatially. In this section, we give detailed data preprocessing details,
as shown in Algorithm 1.

Algorithm 1 Point Cloud Spatial Disentangle Algorithm

1: Input: Partial point cloud 𝑃 = {𝑝𝑖 }𝑁𝑖=1, complete point cloud
𝑃𝑐 = {𝑝𝑖 }𝑁𝑐

𝑖=1, resolution 𝜎
2: Output: Ground truth for refining 𝑃𝑟 = {𝑝𝑖 }𝑁𝑟

𝑖=1, ground truth
for missing 𝑃𝑚 = {𝑝𝑖 }𝑁𝑚

𝑖=1
3: Initialization: 𝑁𝑟 = 𝑁𝑚 = 0, the dilation kernel 𝐷𝑟 = 𝐷𝑚 =

(2, 2, 2)
4: Voxelize the 𝑃 and 𝑃𝑐 with the same resolution 𝑟 to obtain 𝑉𝜎

𝑝

and 𝑉𝜎
𝑐

5: for 𝑁𝑟 <
𝑁𝑐

2 do
6: Increase the size of the dilation kernel: 𝐷𝑟 = 𝐷𝑟 + 1
7: Perform a dilation operation on𝑉𝜎

𝑝 :𝑉𝜎
𝑝
′ = 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛(𝑉𝜎

𝑝 , 𝐷𝑟 )

8: 𝑃𝑟 =

(
𝑉𝜎
𝑝
′ ∩𝑉𝜎

𝑐

)
∩ 𝑃𝑐 , 𝑁𝑟 = 𝑛𝑢𝑚 (𝑃𝑟 )

9: 𝑉𝜎
𝑚 = ¬𝑉𝜎

𝑝 ∩𝑉𝜎
𝑐

10: for 𝑁𝑚 <
𝑁𝑐

2 do
11: Increase the size of the dilation kernel: 𝐷𝑚 = 𝐷𝑚 + 1
12: Perform a dilation operation on 𝑉𝜎

𝑚 : 𝑉𝜎
𝑚
′ =

𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛(𝑉𝜎
𝑚 , 𝐷𝑚)

13: 𝑃𝑚 =
(
𝑉𝜎
𝑚
′ ∩𝑉𝜎

𝑐

)
∩ 𝑃𝑐 , 𝑁𝑚 = 𝑛𝑢𝑚 (𝑃𝑚)

14: end for
15: end for
16: Grid sampling for data alignment: 𝑃𝑟 = 𝐺𝑆

(
𝑃𝑟 ,

𝑁𝑐

2

)
17: Grid sampling for data alignment: 𝑃𝑚 = 𝐺𝑆

(
𝑃𝑚,

𝑁𝑐

2

)
Specifically, for the ShapeNet-34/55 dataset, we set the ground

truth points of the missing region and refine region to be half of
the total points in the complete point clouds, i.e., 4096 points. This
results in better data alignment and concatenation. Furthermore,
to determine the most suitable voxelization resolution, we also
performed an analysis on the dataset and the results are shown in
Fig. 10. The blue column indicates the number of samples included
in this category. The polylines of different colors represent the
number of sampling points at different resolutions. The closer these
polylines are to 4096, the better the precision. As points exceed
4096, downsampling is required. This process will inevitably lose the
structure of existing points, which is not conducive to refinement.
There will be more cracks at the connection point of the final
completion result when the number of points is less than 4096,
since a larger dilation kernel will increase the connection range.
Additionally, we use Grid Sampling(GS) rather than FPS in order to
avoid destroying the overall structure of the point cloud.
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Figure 10: Specific ShapeNet-55 processing and analysis results. We provide the number of points obtained by voxelizing the
point cloud at different resolutions and the number of samples included in the different categories.

GRNet PoinTr SeedFormer OursPartial& 
Ground Truth

Figure 11: Comparing point cloud completion results using
different methods. We also show the associated error maps,
where the colors reveal the nearest distance for each target
point to the point set generated by each method.

Figure 12: Comparing point cloud completion results and
reconstructed 3D meshes using different methods.
7.4 More Qualitative Results
In Fig. 11 and Fig. 12, we provide more qualitative results of point
cloud completion. It can be seen that our results can better infer
missing structures and have smoother surfaces compared to other
methods.
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